

 Page 1 of 14 aparavi.com

Aparavi Open Data Format

Document Purpose
After reading this document, a software engineer with C++ coding skills will understand how
Aparavi software stores archived data. With this knowledge you will be able to develop
programs to read your organization’s archived data to reconstruct your archived files without
the use of Aparavi’s web application.

Suggested Preliminary Reading
Read the “APARAVI Storage Model Overview” white paper which describes Checkpoints,
Snapshots, and Archives as well as topics on linking, pruning and policies.

https://www.aparavi.com/resources/whitepapers/

Contents
Aparavi Open Data Format ... 1

Document Purpose ... 1

Suggested Preliminary Reading .. 1

Tags ... 2

Tag Transformation ... 2

Compression Transformation ... 2

Encryption Transformation ... 3

Multiple Transformations ... 4

Data Retrieval Process Flow .. 4

Technical C++ Implementation ... 5

Beginning Information (CBEG) Example Tag ... 5

Compression (OCMP) Example Tag .. 6

Snapshot ‘Dump’ Example .. 7

Example Snapshot History .. 10

Storage Destinations and File Structures .. 11

Agent and Appliance Identification .. 12

Appendix ... 13

Tag Types and Structures .. 13

https://www.aparavi.com/resources/whitepapers/

 Page 2 of 14 aparavi.com

Tags
Aparavi stores data in a structure called a Tag. A Tag is a type of container that includes both
metadata (to describe the content and structure of the following data) and data.

Tags include the following

• Signature to designate that a new tag begins

• Tag Type to define the structure of the data in the tag

• Size to designate the variable length of the data

• Offset sometimes data is too big to be stored in a single tag, so it must be stored in multiple

sequential tags with the offset tying the tags together

The complete Tag definition looks like the following.

An example Tag of type ODAT with an offset would look like the following

Tag Transformation
Tag transformations are used to transform data from one tag type to another. As example, a
compression tag tells you the data was compressed, and an encryption tag tells you the data
has been encrypted.

Compression Transformation
The following is an example of the compression transformation.
For example, a simple Tag of Type X is written with 200 Bytes of data in its original format.

signature

tag

size

offset

data []

signature: TAG- signature: TAG-

tag: ODAT tag ODAT

size: 65,536 size: 3,406

offset: 0 offset: 65,536

data [65,536] data [3,046]

signature: TAG-

tag: X

size: 200

offset 0

data [200]

 Page 3 of 14 aparavi.com

A compression transformation is then used to compress the original Tag into a compressed
format producing a smaller size.

To retrieve the original data, you would first need to read data member of TAG-OCMP for 50
bytes (no offset in this case). Each tag type has an associated structure. In this case OCMP uses
struct TAG_DATA_COMPRESSED_INFO. As such, you need to cast the data bytes to a struct
pointer of type TAG_DATA_COMPRESSED_INFO.

The TAG_DATA_COMPRESSED_INFO has three members: prevTag, uncompressedSize, and
data.

The prevTag member (4 bytes) will be “X” (the original tag type), the uncompressedSize (4
bytes) will be “200”, and the rest of the structure (50-4-4 = 42 bytes) contains the compressed
data. To decompress the data, use LZ4 decompression to transform the data back to its original
form to Tag type X.

Encryption Transformation
Another common transformation is the Encryption transformation. As is the case for all
transformations, the encryption transformation uses the same mechanisms as the compression
transformation. For the encryption transformation the OCEN tag type is used with an
associated data struct type of TAG_DATA_ENCRYPTED_INFO.

To retrieve the original data, you would first need to read the data member of TAG- OCEN for
200 bytes from the offset (in this case 0). Then cast the bytes to a struct pointer of type
TAG_DATA_ENCRYPTED_INFO.

The TAG_DATA_ENCRYPTED_INFO has three members: prevTag, signature, and data.

signature: TAG-

tag: OCMP

size: 50

offset 0

data [50]

prevTag: X

uncompressedSize: 200

data [200]

signature: TAG-

tag: OCEN

size: 200

offset 0

data [200]

prevTag: X

signature: Standard_Key

data [200]

 Page 4 of 14 aparavi.com

The prevTag member (4 bytes) will be “X”. The signature (4 bytes) will be the CRC32 of the
encryption key name (not the pass phrase) which was used to encrypt the data. The rest of the
structure contains the encrypted data. To decrypt the data, use AES256 decryption with the
passphrase associated with the encryption key. This will transform the data back to its original
form to Tag type X.

Multiple Transformations
Multiple transformations can be strung together. A typical multi-transformation combination is
compression followed by encryption.

To retrieve the original data, you would first need to read the data member of TAG-OCEN for 50
bytes from the offset (in this case 0). Then cast the bytes to a struct pointer of type
TAG_DATA_ENCRYPTED_INFO.

The prevTag member (4 bytes) will be type OCMP. The signature (4 bytes) will be the CRC32 of
the encryption key name (as is the case when the encryption key transformation is used by
itself). Once you decrypt the data, the final step is to perform the decompression
transformation as described above.

Data Retrieval Process Flow
To retrieve all the data out of the Aparavi data files, follow the steps highlighted below.

1. Read the data file (stored in binary format) tag by tag. Each tag will start with “TAG- “signature

2. For tags that contain data (indicated by a non-zero size), cast the data member into the relevant

structure identified by the tag type

3. Perform the type-specific required algorithm (e.g., decompression, decryption …)

4. Repeat steps 2 and 3 for all additional transformations until you get back to the original data

5. Repeat the process until there are no tags left in the file

signature: TAG-

tag: OCEN

size: 50

offset 0

data [50]

prevTag: X

uncompressedSize: 200

data [200]

prevTag: OCMP

signature: Standard_Key

Data [50]

 Page 5 of 14 aparavi.com

Technical C++ Implementation
Aparavi uses C++ structs to store the tags. For a list of all the tag types and their associated
structure, please see the appendix.

As example, the struct for _tagTAG_ITEM is defined as follows:

typedef struct _tagTAG_ITEM {
 dword signature; // the signature - (TAG_ITEM_SIG)
 dword tag; // the tag type
 dword size; // the size of following data
 dword reserved; // reserve for future use
 qword offset; // the offset of following data
 byte data[1]; // the data array
} TAG_ITEM;

Tags are stored as TAG_ITEM after TAG_ITEM until the end of the file.
Members of the structure have specific meaning and usage defined as:

• signature: validator that a new tag starts, defined as:
 #define TAG_ITEM_SIG 0x2D474154

• tag: used to define structure of the data found in the data member. Each tag type has a specific

data structure.

• size: size in bytes of the data field

• offset: needed when the data member value exceeds the maximum size allowed and must be

stored in multiple sequential tags

Beginning Information (CBEG) Example Tag
Let’s look at an example of how a single tag is stored. For this example, the tag type is CBEG
(component begin), with a data size of 8, and an offset of 0.

signature: remember that for all tags the signature is

 #define TAG_ITEM_SIG 0x2D474154

The hex value is written to disk in reverse order in little-endian form. Converting the hex value
of the TAG_ITEM_SIG, you will get:

0x54 = ‘T’
0x41 = ‘A’
0x47 = ‘G’
0x2D = ‘–‘

tag: observe how the tag type CBEG (component begin) is stored as hex:
0x43 = ‘C’
0x42 = ‘B’
0x45 = ‘E’
0x47 = ‘G‘

size: 8
offset: 0
data: the data member will begin after 24 bytes since there are four dword members of 4 bytes
each and one qword member at 8 bytes (4 x 4 + 8 = 24).

 Page 6 of 14 aparavi.com

The data member has a predefined structure based upon the tag type. As example, the CBEG
data structure is defined as:

typedef struct _tagTAG_COMPONENT_BEGIN_INFO {
 dword componentId; // the offset within the stream of the component
 dword componentFlags; // flags for this component
} TAG_COMPONENT_BEGIN_INFO;

Using a binary viewer, let’s examine how a CBEG tag with 8 bytes of data (i.e., two dword types)
as defined in TAG_COMPONENT_BEGIN_INFO might look like.

Tag data is stored as:

• 54 41 47 2d = signature as TAG-

• 43 42 45 47 = tag type as CBEG

• 08 00 00 00 = size of the data member at 8 bytes

• fa 7f 00 00 = reserved

• 00 00 00 00 00 00 00 00 = data offset. Since this is the first tag and limited at 8 bytes, it is 0

• 01 00 00 00 01 00 00 00 = data for CBEG as two dwords (2 x 4 bytes = 8 bytes)

Compression (OCMP) Example Tag
Aparavi uses LZ4 compression to minimize storage. As explained above, one tag can embed
another tag via the associated transformation logic.

Many metadata tags contain very little data. There is no benefit to compress these metadata
tags. Because the tag type defines the data structure that is used for the data array, this means
that some tags will always be stored without compression. For example, the tag type CBEG has
a data size of 8 and won’t be compressed.

Let’s examine a tag that has large enough data for compression to be used. Tag OGEN (generic
object) contains information about the file being stored. The data struct is defined as:

typedef struct _tagTAG_OBJECT_GENERIC_INFO {
 qword fileSize; // Object size
 qword accessTime; // Last file access time
 qword modifiedTime; // Time of last modification
 bool isDirectory; // Is object a directory?
 utf8 name[1]; // Name
} TAG_OBJECT_GENERIC_INFO;

For this example, we store and compress the object named ‘myFolder’.

 Page 7 of 14 aparavi.com

The data structure for the compressed TAG is:

typedef struct _tagTAG_DATA_COMPRESSED_INFO {
 dword prevTag; // previous tag
 dword uncompressedSize; // original uncomp size
 byte data[1]; // lz4 compressed data
} TAG_DATA_COMPRESSED_INFO;

Observe how the OCMP (object compression) tag is written to disk:

Tag data is stored as:

• 54 41 47 2d = signature as TAG-

• 4f f3 f3 50 = tag type as OCMP (object compression)

• 1d 00 00 00 = size of the data member at 1d hex = 29 bytes

• cc cc cc cc = reserved

• 00 00 00 00 00 00 00 00 = data offset. Data stored in one tag. So no offset

• 4f 47 57 4e = data

Snapshot ‘Dump’ Example
As you have seen from the previous examples, each tag holds specific information with a
designated structure specific to the tag type. The data within that structure could be the
transformation of another tag and so on. Showing a binary viewer screenshot containing all the
tags in a snapshot is not practical and quite redundant.

To visualize all the tags and their data, Aparavi includes a ‘Dump’ utility. Dumping a snapshot
with a single file would look like the following:

 Page 8 of 14 aparavi.com

Notice how many different tags are used to a store the folder “myFolder” with a single file
“myFile.txt”. You can see that in this example encryption was not used (i.e., no encryption tags)
and that compression was used (see TAG_DATA_COMPRESSED).

 Page 9 of 14 aparavi.com

We can also visualize which tags are stored without compression after the decompression
transformation is processed.

 Page 10 of 14 aparavi.com

To get a better understanding of the dump file, let’s examine the TAG_OBJECT_BEGIN in more
detail.

Generation = 1.0 means that this is the first time this file was stored. This is called “the base”.
On large files, when the user changes just a small part of the file, Aparavi will store just the
changes (also known as “the delta”). On that delta snapshot, the generation would be 1.1.
Much like a “minor version” of a release.

Link = SN0000000000/3 means that it’s the 3rd component of snapshot 0. Snapshot 0 contains
the data, so later snapshots can just copy that from snapshot 0.

If a large file is stored and more than 50% of its data was changed, Aparavi will perform a new
full copy of the file. Examining its generation would see 2.0 where the major number would
increase, and the delta is set back to zero.

Example Snapshot History
The following example looks at snapshots 1 to 8 as file “HelloWorld” is created and changed
over time.

SN000001: First full copy of file “HelloWorld”
type ET_THIS object data is contained within this set
generation 1.0 set to 1.0 as the base since there is no previous version
this 1/SN000001 TAG_OBJECT_BEGIN contained in current set
link 1/SN000001 no link. Data contained in current set
base 1/SN000001 set to current snapshot as this is full copy

SN000002: No changes were made to file “HelloWorld”
type ET_LINK object data is contained in link to previous set
generation 1.0 inherited from previous snapshot
this 0/(empty)
link 1/SN000001 inherited from previous set
base 1/SN000001 inherited from previous set

SN000003: Small changes were made to file “HelloWorld”
type ET_THIS object data once again is contained within this set
generation 1.1 minor version incremented by 1
this 3/SN000003 TAG_OBJECT_BEGIN contained in current set
link 3/SN000003 no link. Data contained in current set
base 1/SN000001 inherited from previous set

 Page 11 of 14 aparavi.com

SN000004: No changes were made to file “HelloWorld”
type ET_LINK object data is contained in link to previous set
generation 1.1 inherited from previous set
this 0/(empty)
link 3/SN000003 inherited from previous set
base 1/SN000001 inherited from previous set

SN000005: No changes were made to file “HelloWorld”
type ET_LINK object data is contained in link to previous set
generation 1.1 inherited from previous set
this 0/(empty)
link 3/SN000003 inherited from previous set
base 1/SN000001 inherited from previous set

SN000006: Small changes were made to file “HelloWorld”
type ET_THIS object data once again is contained within this set
generation 1.2 minor version incremented by 1
this 6/SN000006 TAG_OBJECT_BEGIN contained in current set
link 6/SN000006 no link. Data contained in current set
base 1/SN000001 inherited from previous set

SN000007: No changes were made to file “HelloWorld”
type ET_LINK object data is contained in link to previous set
generation 1.2 inherited from previous set
this 0/(empty)
link 6/SN000006 inherited from previous set
base 1/SN000001 inherited from previous set

SN000008: Over 50% of file “HelloWorld” was changed
type ET_THIS object data once again is contained within this set
generation 2.0 increment major version by one to indicate a full copy
this 8/SN000008 TAG_OBJECT_BEGIN in this set
link 8/SN000008 no link. Data contained in current set
base 8/SN000008 set to current snapshot as this is full copy

Storage Destinations and File Structures
Snapshots are stored as .dat files on the appliance within the appliance’s configured data
directory. Checkpoints are also stored as .dat files, but are stored on the agent within the
agent’s configured data directory.

Archives are stored in a folder structure typically within a cloud storage provider. The folder
structure is organized by appliance, then agent, then archive operation. The appliance and
agent folder names use their “node ID”. The node ID’s are globally unique identifiers generated
by Aparavi.

 Page 12 of 14 aparavi.com

Each time an archive operation (i.e., a new archive) is performed, a new archive folder is
created as an ARnnnn.dat folder within the appliance->agent folder structure as seen in the
example below.

The data tags are stored within sequential files in the ARnnnn.dat folders. Each sequential file
contains up to 5MB of data until the source file is completely written. The files are organized
with a hex number suffix.

Agent and Appliance Identification
To identify the agent and appliance ID’s and names, perform the following steps:

1. Determine where your data is stored for long-term data retention by examining the providers

section of the policy

2. Access the cloud storage provider and navigate to the bucket defined by the policy

3. Inside that bucket you will see a folder called “Appl <id>” for the Appliance Node ID

4. Inside that folder you will see a set of folders named “Node <id>”. Each of these Node ID folders

represents a unique agent assigned to the current appliance

5. Within the agent folder you will see multiple ARnnnn.dat folders. Each of these folders are the

archive operations

6. Within each ARnnnn.dat folder are the files that contain the tags representing your archive

7. Access the agent and appliance machines and navigate to the installation folder. Open the

node_modules\agent (or appliance) folder and view the config.json file. Here you will see the

nodeID values. If you are looking at the agent’s file, the “parentObjectId” will contain the

appliance’s ID.

 Page 13 of 14 aparavi.com

Appendix

Tag Types and Structures

typedef struct _tagTAG_COMPONENT_BEGIN_INFO {
 #define COMPFLAG_NO_COPY BIT(0)
 Dword componentId; // offset within stream where component begins
 Dword componentFlags; // flags for this component

} TAG_COMPONENT_BEGIN_INFO;

typedef struct _tagTAG_COMPONENT_END_INFO {
 Qword phyComponentBegin; // offset within stream where component begins
} TAG_COMPONENT_END_INFO;

typedef struct _tagTAG_DATA_COMPRESSED_INFO {
 Dword prevTag; // previous tag
 Dword uncompressedSize; // orginal uncompressed size
 Byte data[1]; // lz4 compressed data
} TAG_DATA_COMPRESSED_INFO;

typedef struct _tagTAG_DATA_ENCRYPTED_INFO {
 Dword prevTag; // previous tag
 Byte signature[4]; // CRC-32 signature to ensure correct key
 Byte data[1]; // keyName + encrypted data
} TAG_DATA_ENCRYPTED_INFO;

typedef struct _tagTAG_OBJECT_GENERIC_INFO {
 Qword fileSize; // object size
 Qword accessTime; // last file access time
 Qword modifiedTime; // time of last modification
 Bool isDirectory; // is object a directory?
 Utf8 name[1]; // name of file / directory
} TAG_OBJECT_GENERIC_INFO;

typedef struct _tagTAG_OBJECT_LINUX_INFO {
 Qword changeTime; // time of last status change
 Dword attributes; // file attributes for fchmod
 Dword ownerId; // owner id of a file
 Dword groupId; // group id of a file
} TAG_OBJECT_LINUX_INFO;

typedef struct _tagTAG_OBJECT_WINDOWS_INFO {
 Qword createdTime; // time of file creation (FILETIME converted to Qword)
 Qword accessTime; // last file access time (FILETIME converted to Qword)
 Qword modifiedTime; // time of last modification (FILETIME converted to Qword)
 Dword attributes; // file attributes
} TAG_OBJECT_WINDOWS_INFO;

typedef struct _tagTAG_LINK_INFO {
 BOOL symbLink;
 Utf8 linkTo[1]; // Name of the file to link to

 Page 14 of 14 aparavi.com

} TAG_LINK_INFO;

typedef struct _tagTAG_DELTA_VERSION_INFO {
 Dword version; // version of delta class
 Dword fragSize; // size of fragment
 Dword generationId; // generation id
 Dword deltaId; // delta id
 Dword baseComponent; // component in base snapshot
 Utf8 baseName[MAX_SET_NAME_SIZE + 1]; // name of base snapshot
} TAG_DELTA_VERSION_INFO;

typedef struct _tagTAG_DELTA_REFER_INFO {
 Qword offsetBase; // base input offset
 Dword count; // number of referals
 Dword reserved; // reserved area
 REFERAL referal[1]; // the referal
} TAG_DELTA_REFER_INFO;

typedef struct _tagTAG_DELTA_SIG_INFO {
 Dword count; // number of signatues in sigs
 SIGNATURE sigs[1]; // an array of signatures
} TAG_DELTA_SIG_INFO;

typedef struct _tagTAG_DELTA_DEFINE_INFO {
 Qword blockPosition; // position of the block relative to TAG_OBJECT_BEGIN
 Dword prevTag; // previous tag (we changed it to TAG_DELTA_DEFINE)
 Dword blockId; // not used
 Byte data[8]; // the data itself (more than 8, 8 is used for alignment)
} TAG_DELTA_DEFINE_INFO;

